indicator function造句
例句與造句
- Numerical tests shows that indicator function method is a simple and fast method , by which better reconstruction can be gained for no superior knowl - edge of the physical properties about media
數(shù)值實(shí)驗(yàn)表明,指示函數(shù)方法簡單快速而準(zhǔn)確,能在不對介質(zhì)的物理性質(zhì)有先驗(yàn)的假設(shè)基礎(chǔ)上,給出較好的重構(gòu)效果。 - From mathematical models for inverse scattering in two dimensional inho - mogenous media including variable impedance , all kinds of probable mixed variable impedance boundaries and cracks , from interior and exterior trans - mission problems and radiation condition , ill - posed integral equation and indicator function method are formulated for the diverse of boundary iden - tification . it is shown that the kernel of the integral equation characters the boundary of scatterer , which is determined by solving it by virtual of regularity method , meanwhile , some numerical tests are given . 3
在二維非均勻介質(zhì)逆散射邊界識(shí)別的數(shù)學(xué)模型(包括一般的非均勻介質(zhì),正交各向異性介質(zhì),變阻抗介質(zhì),各種可能的混合變阻抗邊界問題)下,由內(nèi)透射問題和外透射問題以及輻射條件,推導(dǎo)了上述介質(zhì)的邊界識(shí)別的積分方程和指示函數(shù)方法,由于積分方程的核充分表征了散射物的邊界,由此說明只要利用正則化方法求解該積分方程,就可以確定散射物的邊界。 - First , in virtual of identification of flaws is a typical of in - verse problems , proceeding from time - harmonic electromagnetic maxwell ' s equa - tion and helmholtz equation , the uniqueness and existence of direct scattering problems including the numerical algorithms of diverse of boundary conditions is given . second , the uniqueness and existence of inverse scattering problems and the theory of ill - posed integral equation are briefly looked back upon . finally , indicator function method for boundary identification is set up under all kinds of boundary conditions for inverse scattering of homogenous and inhomogenous objects , meanwhile , the proof of possibility for near - field measurements and nu - merical simulation are given
由于缺陷的識(shí)別是一類典型的反問題,因而首先從時(shí)諧電磁maxwell方程和helmholz方程出發(fā),具體地闡述了求解正散射問題的有關(guān)方法,包括各種(夾雜)邊界條件下的數(shù)值解法,就解的存在性唯一性給予了肯定的回答;隨后對逆散射問題的理論作了簡短的回顧,包括解的唯一性以及非線性不適定積分方程的處理等;然后對均勻介質(zhì)和非均勻介質(zhì)的逆散射問題建立了在各種邊界條件下的邊界識(shí)別的指示函數(shù)方法,鑒于近場數(shù)據(jù)獲得的重要性,對近場測試時(shí)邊界識(shí)別的方法給予了相應(yīng)的證明,并且實(shí)現(xiàn)了數(shù)值模擬。 - Conditions of normal mode realization are deduced and optimized model with the multivariate mode indicator function as the target function is built . through solving the maximal eigenvalue problem , the original shaker force vector of appropriation is reached . then the realization approach of the optimal shaker force vector based on single shape principle is proposed and at the same time the automatization of normal mode appropriation is realized
對于模態(tài)物理分離技術(shù)的多點(diǎn)正弦激振純模態(tài)試驗(yàn)技術(shù),尋求其最佳激振力矢量是最為關(guān)鍵的環(huán)節(jié),本文先推導(dǎo)出純模態(tài)實(shí)現(xiàn)的條件,建立以多變量模態(tài)指示函數(shù)為目標(biāo)函數(shù)的優(yōu)化模型,通過求解最大特征值問題,得出適調(diào)純模態(tài)的初始激振力矢量,再提出以單純形原理為基礎(chǔ)的最佳激振力矢量的實(shí)現(xiàn)方法,同時(shí)也實(shí)現(xiàn)了純模態(tài)適調(diào)過程的自動(dòng)化。 - From mathematical models for inverse scattering in two dimensional homoge - nous media including dirichlet , neumann , robin , all kinds of probable mixed boundaries and cracks , direct and inverse scattering are discussed , and ill - posed integral equation and indicator function method are formulated for the diverse of boundary identification . it is shown that the kernel of the integral equation characters the boundary of scatterer , which is determined by solv - ing it by virtual of regularity method , meanwhile , some numerical tests are given . 2
在二維均勻介質(zhì)逆散射各種邊界識(shí)別的數(shù)學(xué)模型(包括dirichlet , neumann , robin ,各種可能的混合邊界問題,裂紋問題)下,分別考慮了正散射問題和逆散射問題,推導(dǎo)了上述各種邊界識(shí)別的不適定積分方程以及指示函數(shù)方法,由于積分方程的核充分表征了散射物的邊界,由此說明只要利用正則化方法求解該積分方程,就可以確定散射物的邊界,并給出了一些數(shù)值實(shí)驗(yàn)。 - It's difficult to find indicator function in a sentence. 用indicator function造句挺難的
- In chapter2 , we establish the model of present value of benefits , which is fitted to two situations - single life situations and multiple life situation : where b ( t ) is a positive function , is force of interest accumulation function , i ( t ) is indicator function and t is the remaining life of the insured
第2章提出了具有一般形式的變額壽險(xiǎn)的給付現(xiàn)值模型,適合于單生命狀態(tài)和多生命狀態(tài)兩種情形:其中b ( t )為正值函數(shù), y ( t ) = t + ? y ( t )為息力累積函數(shù), i ( t )為示性函數(shù)。 t為被保險(xiǎn)人的余壽。